If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-4-9=0
We add all the numbers together, and all the variables
3x^2-13=0
a = 3; b = 0; c = -13;
Δ = b2-4ac
Δ = 02-4·3·(-13)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{39}}{2*3}=\frac{0-2\sqrt{39}}{6} =-\frac{2\sqrt{39}}{6} =-\frac{\sqrt{39}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{39}}{2*3}=\frac{0+2\sqrt{39}}{6} =\frac{2\sqrt{39}}{6} =\frac{\sqrt{39}}{3} $
| -(5+3)-(6n-3)=6n+8n | | 10-2(2x-4)=2(3x+4) | | 5x+3-(7x-2-(4x+8))=x+19 | | N/60f42=14 | | 2x+16=56−6x | | 35x-25x=1250 | | x*0.3=25 | | 8+3k=2(k+1) | | 8–3x=23 | | –g+18=–20−3g | | 40x-20x=1300 | | 5^a+3=8 | | 9+14u=13u | | 2x-4=2x-16 | | K=50+120x | | -32-3v=5(3-4v)+4 | | 40x+1300=20x+1300 | | 8x=144−8x | | 5a–4=4+2a | | 8-1/7x=6-1/5x | | n+13=n-12 | | -5+10d=8d+5 | | 3(n+4)=-2+n | | 40x+20x=1300 | | 3(x-2)+5(3-x)=16 | | 3x²+8-3=0 | | 6=2/3x+16 | | 3(y–1)+2(y+3)=13 | | 7(-5x-6)=32+2x | | -5+q=10q-5q-9 | | 5x-7+3x+7=180 | | 5x+7=105+-9x |